By using tdwi.org website you agree to our use of cookies as described in our cookie policy. Learn More

RESEARCH & RESOURCES

Featured Webinars

International Broadcasts

TDWI Webinars on Big Data, Business Intelligence, Data Warehousing & Analytics

TDWI Webinars deliver unbiased information on pertinent issues in the big data, business intelligence, data warehousing, and analytics industry. Each live Webinar is roughly one hour in length and includes an interactive question-and-answer session following the presentation.


On Demand

Making Multiplatform Data Architectures Work for You: Common Use Cases and Reference Architectures

To leverage the new wave of advanced data sources available, users and architects are turning to a multiplatform data architecture (MDA), where numerous diverse data platforms and tools are integrated in a multiplatform, distributed architecture. An MDA is typified by an extreme diversity of platform types that may include multiple brands of relational databases, NoSQL platforms, in-memory functions, and tools for data integration, analytics, and stream processing. Any of these may be on premises, in the cloud, or in hybrid combinations of the two.

Philip Russom, Ph.D.


Ask the Expert: Data Science
TDWI Members Only

It’s hard to find a topic out there hotter than Data Science right now; and can be equally hard to find one more confusing. Data Science techniques have revolutionized nearly any industry you can imagine, and in some cases created whole new ones from thin air. Despite this, much of Data Science remains couched in mystery--a magic black box that is supposed to solve all of our problems.

Frank Evans


Get More Business Value from a Data Lake via Data-as-a-Service (DaaS)

Data lakes are coming on strong as a modern and practical way of managing the large volumes and broad range of data types and sources that enterprises are facing today. TDWI sees data lakes managing diverse data successfully for business-driven use cases, such as omni-channel marketing, multi-module ERP, the digital supply chain, and data warehouses extended for business analytics. Yet, even in business-driven examples like these, user organizations still haven’t achieved full business value and return on investment from their data lakes.

Philip Russom, Ph.D.


Use Big Data Analytics and Geoenrichment to Drive Better Business Outcomes

The volumes of data and speed at which data is produced continually increases on an exponential scale. Consumer transaction data, client records and data in motion from mobile devices, IoT sensors and other sources usually contains associated geographic coordinates that require geospatial processing to extract value. With the volume and variety of this data, organizations need to have a location strategy that includes big data technology that can join disparate data sets (geoenrichment) and perform location analytics to reveal actionable business and operational insights.

David Stodder


Defining a Multiplatform Data Architecture and What It Means to You

A revolution is occurring in modern analytics, driven by our ability to capture new sources of information at a detail previously too complex and costly to imagine. As more data comes from new sources (from machines to social media) and is applied to new applications, data is evolving into greater diversity, including every variation of data type from unstructured to multistructured. Even as new tools to analyze and manipulate this newly available resource come online, it is not enough to look at the data manipulation layer alone.

Philip Russom, Ph.D.


Accelerating the Path to Value with Business Intelligence and Analytics: A TDWI Best Practices Research Report

Organizations of all sizes are in competition to realize value from data – and to realize it faster. To do so, they increasingly need flexible and agile business intelligence(BI), analytics, and data infrastructure, not systems that take too long to develop and do not give users the dynamic, iterative, and interactive access to data that they need. Fortunately, technology developments are trending in a positive direction for organizations seeking to accelerate their path to value with BI, analytics, and the critical supporting data infrastructure. These include self-service BI and visual analytics, self-service data preparation, cloud computing and software as a service(SaaS), and new data integration technologies.

David Stodder


Ask the Expert: Ask the Expert on Data Maturity
TDWI Members Only

An increase in data maturity correlates to an increase in business success. Yet though organizations gladly allocate budget to business projects, they neglect data maturity—even to the point of allowing it to deteriorate.

William McKnight


TDWI Membership

Get immediate access to training discounts, video library, research, and more.

Find the right level of Membership for you.