RESEARCH & RESOURCES

Featured Webinars

  • Location, Location, Location: How Geoenrichment Can Improve Business Intelligence and Analytics

    Geospatial data is growing in importance for business intelligence as users seek to make sense of diverse data. One element that many types of data have in common is location. Critical attributes of human, machine, and application-generated data become clearer when the source’s location—or movement from one location to another—is known and incorporated into reporting and analysis. Business users can spot trends, patterns, gaps, and other data relationships more clearly if they are able to visually integrate different types of data with maps. If organizations can enrich demographic, behavioral, operational, and other data with location information, they will be on a faster path to generate breakthrough insights and make smarter decisions. December 7, 2017 Register

  • Building a Successful Data Lake in the Cloud

    Data lakes on Hadoop have come on strong in recent years because they help many types of user organizations – from Internet firms to mainstream industries – capture big data at scale and analyze or otherwise process it for business value. December 12, 2017 Register

  • Unifying Big Data Workloads in Apache Spark

    Big data can provide a significant path to value for organizations. Organizations are often making use of more advanced analytics against big data as part of this evolution. This includes using machine learning for predictive analytics to better understand and predict customer behavior. It includes analyzing more data in real time to take action on analytics. The use cases are wide and varied. December 13, 2017 Register

Upcoming Webinars

  • Location, Location, Location: How Geoenrichment Can Improve Business Intelligence and Analytics

    Geospatial data is growing in importance for business intelligence as users seek to make sense of diverse data. One element that many types of data have in common is location. Critical attributes of human, machine, and application-generated data become clearer when the source’s location—or movement from one location to another—is known and incorporated into reporting and analysis. Business users can spot trends, patterns, gaps, and other data relationships more clearly if they are able to visually integrate different types of data with maps. If organizations can enrich demographic, behavioral, operational, and other data with location information, they will be on a faster path to generate breakthrough insights and make smarter decisions. December 7, 2017 Register

  • Building a Successful Data Lake in the Cloud

    Data lakes on Hadoop have come on strong in recent years because they help many types of user organizations – from Internet firms to mainstream industries – capture big data at scale and analyze or otherwise process it for business value. December 12, 2017 Register

  • Unifying Big Data Workloads in Apache Spark

    Big data can provide a significant path to value for organizations. Organizations are often making use of more advanced analytics against big data as part of this evolution. This includes using machine learning for predictive analytics to better understand and predict customer behavior. It includes analyzing more data in real time to take action on analytics. The use cases are wide and varied. December 13, 2017 Register

  • Ask the Expert on the Roles and Construct of a Thriving Analytic Team
    TDWI Members Only

    Most organizations believe they will achieve better analytic results if they populate a deeper bench of experienced data scientists and machine learning practitioners. But this is akin to building a home exclusively with highly skilled framers, brick layers and cabinet makers. You’ll end up with a solid structure and great workmanship, but not a true functional home. December 14, 2017 Register

  • Up to the Minute: The Need for Rapid Adoption of Streaming Data

    As Internet of Things (IoT) technologies become more common and web data grows in volume, there is growing evidence that the ability to analyze continuous data is not only valuable but necessary. In fact, those with the ability to capture and analyze massive numbers of independent continuous data streams will have a powerful capability that will help them to power operational intelligence and predictive analytics. A growing number of applications increasingly rely on fast analysis, but tomorrow’s world will be even more dependent on up-to-the-minute consumption of data streams. December 19, 2017 Register

  • Evolution of the Data Lake—Implementing Real-Time Change Data in Hadoop

    A ten-fold increase in worldwide data by 2025 is one of many predictions about big data. With such growth rates in data, the “data lake” is a very popular concept today. Everybody touts their platform capabilities for the data lake, and it is all about Apache Hadoop. With its proven cost-effective, highly scalable, and reliable means of storing vast data sets on cost-effective commodity hardware regardless of format, it seems to be the ideal analytics repository. However, the power of discovery that comes with the lack of a schema also creates a barrier for integrating well-understood transaction data that is more comfortably stored in a relational database. Rapidly changing data can quickly turn a data lake into a data swamp. December 20, 2017 Register

  • What It Takes to Be Data-Driven: Technologies and Practices for Becoming a Smarter Organization

    Gut instinct alone is not enough to enable decisions that will drive success. Most businesses today believe in the power of BI and analytics to help drive insight and value. TDWI research indicates that the vast majority of organizations are using technology such as visual analytics and BI dashboards to help them gain insight. However, gaining insight and using that insight to make decisions are often two different things. January 10, 2018 Register

TDWI Webinars on Big Data, Business Intelligence, Data Warehousing & Analytics

TDWI Webinars deliver unbiased information on pertinent issues in the big data, business intelligence, data warehousing, and analytics industry. Each live Webinar is roughly one hour in length and includes an interactive question-and-answer session following the presentation.


Upcoming

What It Takes to Be Data-Driven: Technologies and Practices for Becoming a Smarter Organization

Gut instinct alone is not enough to enable decisions that will drive success. Most businesses today believe in the power of BI and analytics to help drive insight and value. TDWI research indicates that the vast majority of organizations are using technology such as visual analytics and BI dashboards to help them gain insight. However, gaining insight and using that insight to make decisions are often two different things.

Date: January 10, 2018

Time: 9:00AM PT

Fern Halper, Ph.D., David Stodder


On Demand

Using Design Thinking to Unleash Creativity in BI and Analytics Development

Design Thinking methods can help organizations overcome the limitations of traditional BI and analytics development. Design Thinking has enabled retail, banking, and other types of firms to revolutionize how they develop products and services to deliver exceptional customer experiences. These methods offer similar potential for unleashing your organization’s creativity in developing applications and services that delight internal users. With organizations under pressure to deliver higher ROI from data—and frustrated by BI and analytics applications and services that don’t meet users’ requirements or realize value from all the data that they have—now is the time to consider new approaches such as Design Thinking.

David Stodder


Location Analytics for Your Data Lake: Driving New Business Insights and Outcomes

Location information has been a growth area in recent years in data management, as user organizations of many sizes and industries have realized how location information can inspire new business insights, practices, and outcomes. In response, many users have reworked older enterprise data environments to enrich the data with more location information. At the same time they have begun capturing data from new sources that include location information, especially from sensors, machines, devices, vehicles, and the Internet of Things (IoT). Much of this new data is being managed in data lakes, which in turn are usually deployed atop Hadoop.

Philip Russom, Ph.D.


Location Analytics for Your Data Lake: Driving New Business Insights and Outcomes

Location information has been a growth area in recent years in data management, as user organizations of many sizes and industries have realized how location information can inspire new business insights, practices, and outcomes. In response, many users have reworked older enterprise data environments to enrich the data with more location information. At the same time they have begun capturing data from new sources that include location information, especially from sensors, machines, devices, vehicles, and the Internet of Things (IoT). Much of this new data is being managed in data lakes, which in turn are usually deployed atop Hadoop.

Philip Russom, Ph.D.


Ask the Expert on Determining the Economic Value of Data (EvD)
TDWI Members Only

Most organizations lack a road map for leveraging data and analytics to optimize key business processes, uncover new business opportunities or deliver a differentiated customer experience. They do not understand what’s possible with respect to integrating data and analytics into the business model. And the Internet of Things only exacerbates the volume and variety of data that organizations could be capturing.

Bill Schmarzo


Big Data in the Cloud: Strategies for Analytics Success

Big data is becoming the norm for many organizations, which is a good thing because it can provide a great deal of insight. Big data includes large volumes of disparate data types: structured data as well as “newer” data such as text, images, geospatial and streaming data. Analyzing newer kinds of data is becoming mainstream.

Fern Halper, Ph.D.


Three Ways to Succeed with Embedded Analytics

One of the most effective ways to spread the value and accelerate the adoption of business intelligence (BI) and analytics is to embed it into operational applications. End users and customers value the ability to model, monitor, ask, and answer questions throughout the workflow of familiar business applications. In this webinar, you will learn three ways BI and analytics are typically embedded into operational applications, new embedded use cases, and what to consider in your embedded analytics evaluation.

David Stodder


TDWI Membership

Get immediate access to training discounts, video library, BI Teams, Skills, Budget Report, and more

Individual, Student, & Team memberships available.