By using website you agree to our use of cookies as described in our cookie policy. Learn More


Available On-Demand - This webinar has been recorded and is now available for download.

Achieving High-Value Analytics with Data Virtualization

Webinar Speaker: David Stodder, Senior Director of Research for BI, TDWI

Date: Tuesday, July 31, 2018

Time: 11:00 a.m. PT, 2:00 p.m. ET

Webinar Abstract

Analytics projects are critical to business success, and as a result, they are growing in size, number, complexity, and perhaps most important, in their data requirements. TDWI finds that data scientists, business analysts, and other personnel need to view and access data that resides in multiple sources, both on premises and in the cloud, to draw insights from data relationships and discover important patterns and trends.

Data lakes or enterprise data warehouses work for some projects, but for many others it is faster, more efficient, and more cost-effective to query the data where it resides rather than move the data to another system. Data virtualization enables many organizations today to gain data insights from multiple, distributed data sources without the time-consuming processes of data extraction and loading. As analytics become more diverse, ranging from descriptive to predictive, prescriptive, operational, and more, data virtualization can support this range and enable users to realize value sooner.

Join this TDWI Webinar to learn how you can apply data virtualization to analytics projects and workloads. You will hear use case examples, best practices, and insights into technology trends.

Topics to be covered include:

  • How data virtualization addresses advanced BI and analytics challenges in multiplatform, multicloud, and big data environments
  • How data virtualization supports a spectrum of analytics, including descriptive, predictive, prescriptive, and operational
  • The role of data catalogs in data virtualization for improving collaboration, governance, and efficiency of analytics
  • How analytics workloads and development lifecycles can benefit from data virtualization
  • Performance best practices for data virtualization

David Stodder

Your e-mail address is used to communicate with you about your registration, related products and services, and offers from select vendors. Refer to our Privacy Policy for additional information.

TDWI Membership

Get immediate access to training discounts, video library, research, and more.

Find the right level of Membership for you.