By using tdwi.org website you agree to our use of cookies as described in our cookie policy. Learn More

RESEARCH & RESOURCES

Featured Webinars

Upcoming Webinars

  • Expert Panel: Real-Time Analytics Use Cases and Architectures

    In this expert panel, TDWI senior research director James Kobielus will discuss the chief enterprise use cases for real-time analytics and the principal architectural considerations for data, analytics, and IT professionals seeking to optimize their infrastructures for these applications. December 9, 2024 Register

International Broadcasts

TDWI Webinars on Big Data, Business Intelligence, Data Warehousing & Analytics

TDWI Webinars deliver unbiased information on pertinent issues in the big data, business intelligence, data warehousing, and analytics industry. Each live Webinar is roughly one hour in length and includes an interactive question-and-answer session following the presentation.


On Demand

Combat Rising Integration Complexity with dPaaS

Today's integration complexities are supersized. Businesses must contend with unprecedented volumes and varieties of data at a time of growing IT resource scarcity and aging integration software. Throw into the mix the high demands—and even higher expectations—placed on analytics as a way of driving business performance, and it's easy to see why many integration environments are overwhelmed and underperforming.

David Loshin


10 Best Practices for Running Your Business Smarter with Advanced Analytics

In today’s competitive environment, organizations not only want to analyze the past, they also want to understand the present and predict the future. Likewise, organizations want to gain insights from a wide variety of data, ranging from structured, transactional data and unstructured text to spatially enhanced data or machine data from the Internet of Things. TDWI research indicates that many organizations are at an inflection point with analytics—they are making the move from visualizations and dashboards to more advanced analytics such as predictive analytics, text analytics, geospatial analytics, graph engines,and streaming analytics.

Fern Halper, Ph.D.


Data Warehouse Modernization and Analytics for the Digital Enterprise

More and more, organizations want to base decisions on facts, have complete views of customers, manage operations by the numbers, predict and plan strategically, and compete on analytics. As a foundation for achieving these goals, organizations need a modern infrastructure for data warehousing and business analytics.

Philip Russom, Ph.D.


Faster BI for the Masses: How Search Can Make Analytics More Accessible

Business intelligence is critical to getting answers from data, but for many users it is also a huge source of frustration. Since its beginning, the mission of BI has been to make it faster and easier to locate the right data, query it, and return meaningful answers for reporting and analysis. Newer data visualization and discovery tools have improved the user experience, and data warehouses and data lakes have added terabytes to the data within reach. Yet, it still can be a slow and difficult process to get to the most relevant data without help from technical experts. Users often have to wait for their answers and unless the technical experts also have a strong understanding of the business, the answers are usually inadequate—and the process starts all over again.

David Stodder


Streaming Analytics for Real-Time Action – Best Practices for Getting Started

More often, organizations are realizing that analyzing data in motion- i.e., data that arrives continuously as a sequence of instances- can provide substantial business value. This data comes from sensors, social media feeds, traffic feeds, and much more. TDWI has seen growing interest in event stream processing as well as the real-time, continuous analysis of streaming data.

Fern Halper, Ph.D., David Loshin


Improving Data Preparation for Business Analytics

Data preparation is a hot topic today because modern technologies and practices are finally giving users and IT an alternative to traditionally slow, manual, and tedious steps for getting data ready for business intelligence (BI) and analytics. Data preparation covers a range of processes that begin during the ingestion of raw, structured, and unstructured data. Processes are then needed to improve data quality and completeness, standardize how it is defined for communities of users and applications, and perform transformation steps to make the data suitable for BI and analytics.

David Stodder


Accelerating Analytic Insights via the Hybrid Cloud

More often, organizations are looking to the cloud for analytics. The cloud can provide flexibility, elasticity, and convenience. Organizations are using the cloud for a range of business use cases from reporting and sandboxes to production and IoT analytics, and much more. Cloud analytic services offerings are evolving too and becoming more popular – especially with business customers. As a Service (aaS) offerings can target specific subject areas such as churn-detection-as-a-service or fraud-detection-as-a-service. These can help to jump start improved business outcomes much faster than in-house efforts.

Fern Halper, Ph.D.


TDWI Membership

Get immediate access to training discounts, video library, research, and more.

Find the right level of Membership for you.