RESEARCH & RESOURCES

Featured Webinars

  • AI for BI: Tapping Into the Potential of AI and Machine Learning for Business Intelligence

    Business intelligence (BI) has much to gain from one of today’s most exciting trends: the infusion of artificial intelligence (AI) practices and techniques such as machine learning into BI. AI is important for supporting imperatives to make better and faster decisions, particularly as part of daily operations decisions and business processes that cannot wait long for accurate insights. June 19, 2018 Register

  • Achieving Business Value Using Hybrid Analytics

    As companies progress in their analytics efforts, they often look to leverage a hybrid cloud analytics model—one where data from both on-premises and cloud sources is analyzed seamlessly. This approach makes sense especially when analyzing data from diverse sources using more advanced analytics such as machine learning and predictive analytics. Data that is generated both in the cloud and on-premises often needs to be analyzed together. June 20, 2018 Register

  • Practical Predictive Analytics – Results of New TDWI Best Practices Research

    Predictive analytics is now part of the analytics fabric of organizations. TDWI research indicates that it is in the early mainstream phase of adoption. Yet, even as organizations continue to adopt predictive analytics and machine learning, many are struggling to make it stick. Challenges include lack of skills, executive and organizational support, and data infrastructure issues. June 21, 2018 Register

Upcoming Webinars

  • AI for BI: Tapping Into the Potential of AI and Machine Learning for Business Intelligence

    Business intelligence (BI) has much to gain from one of today’s most exciting trends: the infusion of artificial intelligence (AI) practices and techniques such as machine learning into BI. AI is important for supporting imperatives to make better and faster decisions, particularly as part of daily operations decisions and business processes that cannot wait long for accurate insights. June 19, 2018 Register

  • Achieving Business Value Using Hybrid Analytics

    As companies progress in their analytics efforts, they often look to leverage a hybrid cloud analytics model—one where data from both on-premises and cloud sources is analyzed seamlessly. This approach makes sense especially when analyzing data from diverse sources using more advanced analytics such as machine learning and predictive analytics. Data that is generated both in the cloud and on-premises often needs to be analyzed together. June 20, 2018 Register

  • Practical Predictive Analytics – Results of New TDWI Best Practices Research

    Predictive analytics is now part of the analytics fabric of organizations. TDWI research indicates that it is in the early mainstream phase of adoption. Yet, even as organizations continue to adopt predictive analytics and machine learning, many are struggling to make it stick. Challenges include lack of skills, executive and organizational support, and data infrastructure issues. June 21, 2018 Register

  • Getting Started with Data Integration in the Cloud

    Cloud continues to rise in importance as a platform for many IT systems, including those for data integration. Many organizations have now achieved a maturity level where they are using multiple cloud-based applications and online data sources. These users now need data integration tool platforms that support hybrid data environments so they can unify on-premises and cloud-based data sources and targets. Similarly, users increasingly need data integration processing to run natively on clouds (not just on premises), so that data integration functions and related capabilities are closer to software-as-a-service (SaaS) applications, Web data sources, multiple clouds, and increasingly popular cloud-based databases, data lakes, and data warehouses. July 10, 2018 Register

  • Modern Data Architectures to Support Modern Analytics

    Many organizations today are scrambling to meet the needs of new data types and analytics. TDWI research shows that companies are often analyzing data from multiple sources, including structured data, unstructured data, real-time streaming data, location data, and transactional data. They are making use of new techniques such as text analytics and machine learning, and they are moving towards self-service analytics. The traditional data warehouse or data mart is often limited in its ability to support these modern analytics in a fast and friendly way. July 12, 2018 Register

  • How to Design a Data Lake with Business Impact in Mind

    A quarter of organizations surveyed by TDWI in 2017 say they already have a data lake in production, while another quarter say their lake will be in production within 12 months. Although data lakes are still rather new, user organizations have adopted them briskly. Why has the data lake gotten so popular, so fast? July 24, 2018 Register

  • Achieving High-Value Analytics with Data Virtualization

    Analytics projects are critical to business success, and as a result, they are growing in size, number, complexity, and perhaps most important, in their data requirements. TDWI finds that data scientists, business analysts, and other personnel need to view and access data that resides in multiple sources, both on premises and in the cloud, to draw insights from data relationships and discover important patterns and trends. July 31, 2018 Register

TDWI Webinars on Big Data, Business Intelligence, Data Warehousing & Analytics

TDWI Webinars deliver unbiased information on pertinent issues in the big data, business intelligence, data warehousing, and analytics industry. Each live Webinar is roughly one hour in length and includes an interactive question-and-answer session following the presentation.


On Demand

Ask the Expert on Data Literacy
TDWI Members Only

Businesses of all types and sizes are becoming more and more defined by their data. As this happens, it is equally important to improve the ability of managers, staff and even the general public, to make decisions which are well-informed by an understanding of the data behind their choices. Data literacy is the ability to understand the nature of the data we work with, and the ways in which we can interpret and communicate through our use of this important resource.

Donald Farmer


Relational Database Vendors are Going Big on Big Data

The number of options for storing, manipulating and accessing data have exploded over the last decade. Open source “NoSQL” (not-only SQL) have spread like wildfire among organizations with cutting-edge analytics. They, along with Hadoop, have lowered the cost barrier to powerful, flexible and incredibly scalable implementations of systems that access unstructured, semi-structured and flexibly-structured data in addition to relational data. However, the learning- and investment-curves have been prohibitive for many organizations. It is all too common that a company would like to advance its database and analytics capabilities with non-relational data but they don’t have the time, human resources or budgets to dedicate to spinning-up and learning how to use these new technologies.

Aaron Fuller


Master Data Management – Avoiding the Potholes

Andy Hayler brings his wealth of practical experience of master data management projects to bear in order to explore best practice in MDM. Drawing heavily on practical project experience, supplemented by survey data from customer projects, he explains the most common problems that MDM projects encounter, and how to avoid them.

Andy Hayler


IoT’s Impact on Data Warehousing: Defining IoT in Terms of Its Data Requirements

The Internet of Things (IoT) is a computing paradigm where a widening range of physical devices—including smartphones, vehicles, shipping pallets, kitchen appliances, manufacturing robots, and anything fitted with a sensor—can transmit data about their location, state, activity, and surroundings. Depending on the device type, some may also receive data and instructions that control device behavior.

Philip Russom, Ph.D.


Integration and Governance for Big Data, Data Lakes, and Hadoop. Yes, you can do it.

In this presentation, we discuss the need for creating a managed data environment that supports the needs of all users of analytical data while ensuring the creation of governed, sharable, and portable data integration and governance work products.

Claudia Imhoff, Ph.D.


Putting Machine Learning to Work in Your Enterprise

Everyone is talking about machine learning—software that can learn without being explicitly programmed, machine learning (and deep learning) can access, analyze, and find patterns in big data in a way that is beyond human capabilities. The technology is being used in a wide range of industries for use cases including fraud prevention, predicting crop yields, preventing and mitigating natural disasters, predictive maintenance of enterprise assets, and improving supply chain efficiencies.

Fern Halper, Ph.D.


Navigating the Predictive Analytics Market

Predictive analytics is on the verge of widespread adoption. Enterprises are extremely interested in deploying predictive capabilities. In a recent TDWI survey about data science, about 35 percent of respondents said they had already implemented predictive analytics in some way. In a 2017 TDWI education survey, predictive analytics was the top analytics-related topic respondents wanted to learn more about.

Fern Halper, Ph.D.


TDWI Membership

Get immediate access to training discounts, video library, BI Teams, Skills, Budget Report, and more

Individual, Student, & Team memberships available.