RESEARCH & RESOURCES

Featured Webinars

  • Enabling Data Science to Be Data Science: Strategies for Increasing Self-Service Data Science

    Data science offers great potential for what it can contribute to business strategy and operations—that is, if data scientists are actually able to do data science rather than spend most of their time on data management and preparation. TDWI finds that most data science projects spend the majority of time on these areas rather than on development of analytics, models, and algorithms. To increase business value, organizations need solutions that will flip this ratio. January 23, 2018 Register

  • Ask the Expert on The UX Guide to Analytics
    TDWI Members Only

    Enterprise analytics spans a wide array of categories but they all have one thing in common, they require human interaction to realize value. However, much of that value is often left on the table. Factors such as user interviews, persona design, stakeholder buy in, wireframing, iteration, adoption and feedback are underutilized and greatly increase the risk of user disengagement and stakeholder frustration. Analytics managers and dashboard creators can miss the opportunity to leverage user motivations to drive success. January 25, 2018 Register

  • Making Predictive Analytics Work – 5 Keys to Successful Model Deployment and Management

    Organizations are excited about predictive analytics and machine learning for a number of reasons. Companies want to better understand customer behavior. They want to better predict failures in their infrastructure. The uses for predictive analytics are extensive and growing. February 8, 2018 Register

Upcoming Webinars

  • Enabling Data Science to Be Data Science: Strategies for Increasing Self-Service Data Science

    Data science offers great potential for what it can contribute to business strategy and operations—that is, if data scientists are actually able to do data science rather than spend most of their time on data management and preparation. TDWI finds that most data science projects spend the majority of time on these areas rather than on development of analytics, models, and algorithms. To increase business value, organizations need solutions that will flip this ratio. January 23, 2018 Register

  • Ask the Expert on The UX Guide to Analytics
    TDWI Members Only

    Enterprise analytics spans a wide array of categories but they all have one thing in common, they require human interaction to realize value. However, much of that value is often left on the table. Factors such as user interviews, persona design, stakeholder buy in, wireframing, iteration, adoption and feedback are underutilized and greatly increase the risk of user disengagement and stakeholder frustration. Analytics managers and dashboard creators can miss the opportunity to leverage user motivations to drive success. January 25, 2018 Register

  • Making Predictive Analytics Work – 5 Keys to Successful Model Deployment and Management

    Organizations are excited about predictive analytics and machine learning for a number of reasons. Companies want to better understand customer behavior. They want to better predict failures in their infrastructure. The uses for predictive analytics are extensive and growing. February 8, 2018 Register

  • Extending Your Data Warehouse Environment with Hadoop: Bringing Enterprise and External Data Together

    Surveys run by TDWI show that roughly a fifth of mature data warehouse environments now include Hadoop in production. Hadoop is becoming entrenched in warehousing because it can improve many components of the data warehouse architecture—from data ingestion to analytics processing to archiving—all at scale with a reasonable price. February 27, 2018 Register

TDWI Webinars on Big Data, Business Intelligence, Data Warehousing & Analytics

TDWI Webinars deliver unbiased information on pertinent issues in the big data, business intelligence, data warehousing, and analytics industry. Each live Webinar is roughly one hour in length and includes an interactive question-and-answer session following the presentation.


On Demand

Integration and Governance for Big Data, Data Lakes, and Hadoop. Yes, you can do it.

In this presentation, we discuss the need for creating a managed data environment that supports the needs of all users of analytical data while ensuring the creation of governed, sharable, and portable data integration and governance work products.

Claudia Imhoff, Ph.D.


Putting Machine Learning to Work in Your Enterprise

Everyone is talking about machine learning—software that can learn without being explicitly programmed, machine learning (and deep learning) can access, analyze, and find patterns in big data in a way that is beyond human capabilities. The technology is being used in a wide range of industries for use cases including fraud prevention, predicting crop yields, preventing and mitigating natural disasters, predictive maintenance of enterprise assets, and improving supply chain efficiencies.

Fern Halper, Ph.D.


Navigating the Predictive Analytics Market

Predictive analytics is on the verge of widespread adoption. Enterprises are extremely interested in deploying predictive capabilities. In a recent TDWI survey about data science, about 35 percent of respondents said they had already implemented predictive analytics in some way. In a 2017 TDWI education survey, predictive analytics was the top analytics-related topic respondents wanted to learn more about.

Fern Halper, Ph.D.


Making Multiplatform Data Architectures Work for You: Common Use Cases and Reference Architectures

To leverage the new wave of advanced data sources available, users and architects are turning to a multiplatform data architecture (MDA), where numerous diverse data platforms and tools are integrated in a multiplatform, distributed architecture. An MDA is typified by an extreme diversity of platform types that may include multiple brands of relational databases, NoSQL platforms, in-memory functions, and tools for data integration, analytics, and stream processing. Any of these may be on premises, in the cloud, or in hybrid combinations of the two.

Philip Russom, Ph.D.


Ask the Expert: Data Science
TDWI Members Only

It’s hard to find a topic out there hotter than Data Science right now; and can be equally hard to find one more confusing. Data Science techniques have revolutionized nearly any industry you can imagine, and in some cases created whole new ones from thin air. Despite this, much of Data Science remains couched in mystery--a magic black box that is supposed to solve all of our problems.

Frank Evans


Get More Business Value from a Data Lake via Data-as-a-Service (DaaS)

Data lakes are coming on strong as a modern and practical way of managing the large volumes and broad range of data types and sources that enterprises are facing today. TDWI sees data lakes managing diverse data successfully for business-driven use cases, such as omni-channel marketing, multi-module ERP, the digital supply chain, and data warehouses extended for business analytics. Yet, even in business-driven examples like these, user organizations still haven’t achieved full business value and return on investment from their data lakes.

Philip Russom, Ph.D.


Use Big Data Analytics and Geoenrichment to Drive Better Business Outcomes

The volumes of data and speed at which data is produced continually increases on an exponential scale. Consumer transaction data, client records and data in motion from mobile devices, IoT sensors and other sources usually contains associated geographic coordinates that require geospatial processing to extract value. With the volume and variety of this data, organizations need to have a location strategy that includes big data technology that can join disparate data sets (geoenrichment) and perform location analytics to reveal actionable business and operational insights.

David Stodder


TDWI Membership

Get immediate access to training discounts, video library, BI Teams, Skills, Budget Report, and more

Individual, Student, & Team memberships available.