By using website you agree to our use of cookies as described in our cookie policy. Learn More


Available On-Demand - This webinar has been recorded and is now available for download.

Improving Ad Hoc Query Speed for Hadoop Data

TDWI Speaker: Philip Russom, TDWI Research Director

Date: Tuesday, August 27, 2013

Time: 9:00am PT, 12:00pm ET

Webinar Abstract

As user organizations dive deeper into big data analytics, many are depending more heavily than ever on SQL-based ad hoc queries as their primary method for data exploration and discovery analytics (sometimes called investigative analytics). At the same time, the same organizations are adopting or considering Hadoop as their primary storage platform for big data. SQL-based analytics and Hadoop are good choices in isolation, but bringing them together has a catch: Hadoop’s support for queries is minimal at the moment.

A straightforward solution is to use a specialized analytic database management system (ADBMS) to query big data in Hadoop and elsewhere. This way, you get the rich features and query optimization capabilities of a mature ADBMS, along with the massive data store of Hadoop. And, compared to Hadoop, an ADBMS is far more conducive to the iterative approach to query development that most business analysts and data scientists demand for true investigative analytics.

You will learn:

  • Why analytics has made ad hoc query speed more important than ever  
  • Hadoop’s role in multi-platform data warehouse and analytic environments 
  • How analytic database management systems can be “front ends” to Hadoop, providing fast, iterative, feature-rich, ad hoc query capabilities for Hadoop data

Philip Russom, Ph.D.

Your e-mail address is used to communicate with you about your registration, related products and services, and offers from select vendors. Refer to our Privacy Policy for additional information.

TDWI Membership

Get immediate access to training discounts, video library, research, and more.

Find the right level of Membership for you.