By using tdwi.org website you agree to our use of cookies as described in our cookie policy. Learn More

DataOps and MLOps Principles and Practices:

Deliver and Manage Data and Machine Learning with Agility

One-Day Virtual Seminar
December 7, 2023

Explore the full-day course

As enterprise demand for analytics and machine learning grows, data and analytics professionals struggle to keep pace. Consistent delivery of modern analytics requires an approach that is agile, repeatable, and scalable. In this course, you will learn how the DataOps and MLOps methods for delivering data and analytics meet this challenge, providing a mechanism for rapid and repeatable delivery of data and analytics that is scalable and manageable, while also living up to business expectations.

DataOps is a process-focused and automated methodology that concentrates on reducing the cycle time and improving the quality of analytics. DataOps builds on the concepts of DevOps, continuous integration and delivery (CI/CD), and agile. These concepts support quick and efficient software delivery, but analytics is more than software—it is also about the delivery of insights. The DataOps approach delivers consistent and meaningful data which means automating the data lifecycle of acquisition, understanding, integration, transformation, and deployment.

MLOps builds on the data foundation established by DataOps. MLOps is focused on end-to-end processes to develop, build, test, and automate machine learning models. MLOps practices enable organizations to adopt to decrease model time to market and create reproducible capabilities.

In this course, you will learn the principles of DataOps and MLOps, how these processes work together, and how they differ from conventional software development. You will learn best practices that enable repeatable delivery and operations processes that can scale as business demands grow. Learn how to start taking data and analytics delivery to the next level in your business.

You Will Learn

  • Definition, scope, and components of DataOps and MLOps
  • How these approaches apply agile and DevOps principles to data and analytics
  • The key relationships between DataOps and MLOps
  • Principles of continuous integration/continuous delivery (CI/CD) for data management
  • How machine learning models and training sets are incorporated into the CI/CD process
  • How these approaches reduce technical debt
  • The central role of automation
  • Best practices and how to get started

Geared To

  • Program managers for data and analytics
  • Project leads
  • Data scientists
  • Data engineers
  • ML engineers
  • Business stakeholders
  • Analysts
  • Analytics managers
Deanne Larson, Ph.D.

Instructor

Deanne Larson, Ph.D.

Larson & Associates

What’s Included

  • 8 hours of live training with an expert instructor
  • Vendor-neutral, best practice-based course materials
  • Digital course book with unlimited access
  • Opportunities to discuss your challenges with the instructor for recommendations

Discounts

  • Event Alumni Discount

    Been to a TDWI conference or seminar before? Save 10% with code ALUMNI. (Subject to verification.)

  • Member Discount

    Receive a 10% discount on your registration. Membership status will be validated when your registration is processed.

  • Team Discounts

    Teams of 3–9 people save 10% by using code TEAM. Groups of 10 or more will save 20% with code TEAM20.

REFUND AND CANCELLATION: You may substitute one person in your place by contacting [email protected] at least five business days prior to the event. If you must cancel all or part of your registration, your refund request must be sent to [email protected] no later than November 28, 2023. Your fee will be returned, less a 20% cancellation fee. No refunds will be issued after November 28, 2023.

Reserve your spot at the seminar today!

Subscribe to receive seminar updates via email