By using website you agree to our use of cookies as described in our cookie policy. Learn More


Your Team,
Our Instructors
Anywhere, Anytime

Building the In-Demand Skills for Analytics and Data Science

Duration: Three Day Workshop

Prerequisite: Attendees should have some coding experience, basic statistics, and will need to have a laptop computer with RStudio installed prior to the session. In advance of the class attendees will receive detailed instructions for download and installation of RStudio.

Course Outline

Data mining, analytics modeling, predictive algorithms, artificial intelligence, machine learning—you need highly specialized skills to go from business needs to analytics solutions.

Predictive analytics is the baseline of advanced analytics and data science. It is a set of techniques used to gain new knowledge from large amounts of raw data by combining data mining, statistics, and modeling. Predictive analytics goes beyond insight (knowing why things happen) to foresight (knowing what is likely to happen in the future).

Analytics encompasses many skills and disciplines. Identifying the problem, choosing the modeling approach, selecting the correct features to model, and evaluating the result are at the heart of analytics. It is important to start by understanding the problem and defer technology decisions until later in the process.

Data mining is an underlying discipline for the solutions to many kinds of data science and analytics problems. This training is with R, an open source software environment for statistical computing and graphics. It is popular with data scientists and an effective environment to learn how to apply data mining techniques.

The Building the In-Demand Skills for Analytics and Data Science workshop will cover essential analytics and data science techniques and best practices over three days of in-depth, interactive training.

Your Team Will Learn

  • Definitions, concepts, and terminology of predictive analytics
  • To distinguish among various predictive model types and understand the purpose and statistical foundations of each
  • To understand and classify different types of data science problems
  • To discern the characteristics of common data science scenarios
  • How to match data science problems to the best-fit models to solve them
  • To use R as a data mining tool, including functions for correlation, covariance, linear regression, logistic regression, and nonlinear models

Geared To

  • Business analysts, data analysts, and data scientists who need to frame analytics problems and choose the most effective ways to solve those problems
  • Business and technical managers who need to understand the nature of analytics and data science work
  • BI and analytics developers who work with data scientists
  • Anyone who aspires to become a data analyst, business analyst, or data scientist
  • Anyone interested in learning to use data mining techniques to find insights in data and who has at least some statistical and programming experience

Technology Requirements

  • Computers with RStudio installed are necessary for the exercise portions of this content

Contact Us to Get Started Today


Yvonne Baho

Yvonne M. Baho Director, Enterprise Learning
Phone: 978.582.7105

TDWI Course Catalog Download

Download Our Course Catalog

Download Now


Yvonne Baho Yvonne M. Baho
Director, Enterprise Learning
Phone: 978.582.7105

Contact Us to Get Started Today