Hands-On: Machine Learning in R: Advanced Techniques
Duration: One Day Course
Prerequisite: R programming knowledge, statistics, and exposure to the machine learning process/algorithms. You will need a laptop computer with specific software installed prior to the session. When you register for the class, you will receive detailed instructions for software download and installation.
R is the one of the most popular machine learning tools in use today. This course focuses on taking concepts in machine learning and applying them in practical ways. Common algorithms such as regression, clustering, and classification are explained, applied, and evaluated using R. Participants will complete exercises to solidify understanding and build skills with the intent of finishing the course with a toolkit that can be used to build R machine learning skills.
You Will Learn How To
- Do exploratory data analysis
- Use linear models such as linear regression and logistic regression
- Choose features and complete feature reduction
- Use clustering models such as K-means
- Do time series forecasting
- Use classification models such as decision trees and K nearest neighbor
- Use ensemble methods
- Do model validation
Geared To
- Those that have foundation knowledge of R and machine learning