By using website you agree to our use of cookies as described in our cookie policy. Learn More

TDWI Orlando 2019 has ended, sorry you missed it!

Join us for an upcoming conference, Strategy Summit, or check out our full calendar of training opportunities.

TDWI Orlando Conference

W6A Integrating Algorithmic Layers: Core Concepts and Case-Studies in Moving from Data Visualization to Actionable Information

November 13, 2019

9:00 am - 12:15 pm

Duration: Half Day Course

Prerequisite: None

Just because we have amassed a huge amount of data doesn’t mean that we really understand what it is telling us. To move from raw data to actionable information, we frequently must use algorithmic techniques. However, the ever-growing range of available algorithms and the confusing landscape of algorithmic technologies can make it hard to select, apply, and integrate algorithmic intelligence into your data analysis pipeline.

This course can be taken together with W5P as a full-day course or individually as a half-day course. In this session, we will develop a comprehensive framework with which to categorize and assess algorithms, look at a number of real-world case studies where algorithms dramatically changed how visualization was leveraged, and demystify some intimidating advanced algorithmic techniques like decision trees and deep learning neural networks. We’ll touch briefly on the implementation details that are involved in developing systems that leverage algorithms.

For those seeking hands-on experience with the algorithmic technologies discussed in this course, the companion course (W5P) will offer guided examples of working with the technologies discussed.

You Will Learn

  • The difference between data, information, and knowledge, and how to improve visualizations with algorithms that move from data to knowledge
  • How algorithms can make the difference between having a data-driven message fall flat or driving stakeholders to action.
  • A framework for thinking about algorithms and how general-purpose algorithms for numerical data can be applied to nonnumeric and specialized data
  • How to move from simple single-variable algorithms to two-variable algorithms up to n-dimensional algorithms capable of taking many different variables into account
  • How algorithms can be combined to add value by looking at a case study in the airline industry
  • How principal component analysis, clustering, decision trees, and neural networks work, and when to apply them
  • The difference between unsupervised and supervised machine learning, and how the different approaches work together
  • Some of the caveats for applying algorithms and implementing predictive analytics
  • Basic implementation factors to be aware of when developing algorithmic-based solution architectures

Geared To

  • Data analysts, business analysts, business intelligence professionals, analytics professionals, data scientists, and data visualization practitioners
  • Developers or architects responsible for integrating disparate technologies
  • Anyone responsible for finding and communicating knowledge derived from data

Register Online

Rest easy—online registrations for this conference are secure. Our secured server environment keeps your information private.

Sign up to receive updates, discounts, and news about Orlando!