By using website you agree to our use of cookies as described in our cookie policy. Learn More

TDWI Orlando Conference

W6P Hands-on Technical Workshop: Integrating Algorithmic Layers: Turning Raw Data into Actionable Insights

November 13, 2019

2:15 pm - 5:30 pm

Duration: Half Day Course

Prerequisite: None

Just because we have amassed a huge amount of data doesn’t mean that we really understand what it is telling us. To move from raw data to actionable information, we frequently must use algorithmic techniques. However, the ever-growing range of available algorithms and the confusing landscape of algorithmic technologies can make it hard to select, apply, and integrate algorithmic intelligence into your data analysis pipeline.

This course was designed as a companion course to W5A, which explains the difference between data and information through a series of case-studies. For those less interested in the theory and more interested in the practice of working with algorithms, this course can be taken individually. In this course we will look at technical implementation details around integrating algorithms. Attendees will work through the six practical applications of algorithms that were discussed in W5A. If you didn’t attend W5A, you can still attend this course to dive right in to using R, Python, AWS, and APIs to experiment with correlation analysis, principal component analysis, clustering, prediction, and anomaly detection.

You Will Learn

  • The difference between data, information and knowledge, and how to improve visualizations with algorithms that move from data to knowledge
  • How algorithms can make the difference between having a data-driven message fall flat or driving stakeholders to action.
  • How to run correlation analyses and visualize the results in ways that both exploration and explanation
  • How to perform principal component analysis in R, what the results mean, and in what situations this is useful
  • How to perform a clustering analysis and how to integrate the results into business analysis
  • How to predict outcomes by using decision trees in Python, and the difference between unsupervised and supervised machine learning
  • Important differences between client-side and server-side operations as related to algorithmic implementation architectures, and pros and cons of each
  • How to leverage the growing world of APIs by using AWS, Postman, and API algorithm providers

Geared To

  • Data analysts, business analysts, business intelligence professionals, analytics professionals, data scientists, and data visualization practitioners
  • Developers or architects responsible for integrating disparate technologies
  • Anyone responsible for finding and communicating knowledge derived from data
  • Instructions will be emailed to registrants prior to the event to prepare your laptop BEFORE the conference. There is no time allotted in class for laptop preparation.

Register Online

Rest easy—online registrations for this conference are secure. Our secured server environment keeps your information private.

Sign up to receive updates, discounts, and news about Orlando!