TDWI Chicago Conference

T2 Supervised Machine Learning: Preparing Data & Deploying Analytic Models for Classification & Prediction

May 8, 2018

8:00 am - 5:30 pm

Duration: Full Day Course

Prerequisite: None

Regression, decision trees, neural networks—along with many other supervised learning techniques—provide powerful predictive insights. These data-driven insights inform the forces shaping your organization’s outcomes.

New users of these established techniques are often impressed with how easy it all seems. Software to build these models is widely available, but proper data preparation is necessary to get optimal results. No amount of software automation can make up for poor manual data prep. When projects fail, many won't even recognize that data prep was the problem. They will likely conclude that the data was not capable of better performance.

Additionally, although the predictive power of these machine learning models can be very impressive, there is no benefit unless they inform value-focused actions. Models must be deployed in an automated fashion to continually support decision making for residual impact. The instructor will show how to interpret supervised models with an eye toward decisioning automation. This course will demonstrate how real-world projects often combine different kinds of supervised models.

This one-day course will dedicate about half of its time on properly setting up and preparing the data for optimal performance during modeling, with the remainder spent on how to interpret supervised models with an eye toward decisioning automation

You Will Learn

  • When to apply supervised or unsupervised modeling methods
  • Options for inserting machine learning into the decision making of your organization
  • How to use multiple models for value estimation and classification
  • How to properly prepare data for different kinds of supervised models
  • Interpret model coefficients and output to translate across platforms and languages, including the widely used Predictive Modeling Markup Language (PMML).
  • Explore the pros and cons of “black box” models including ensembles
  • How data preparation must be automated in parallel with the model if deployment is to succeed
  • Compare model accuracy scores to model propensity scores that drive decisions at deployment

Geared To

  • Analytic Practitioners; Data Scientists; IT Professionals; Technology Planners; Consultants; Business Analysts; Analytic Project Leaders

Register Online

Rest easy—online registrations for this conference are secure. Our secured server environment keeps your information private.

Subscribe to Receive email notification when the Agenda is updated

TDWI Chicago

Hilton Chicago
Chicago, IL
May 6–11

EVENT APP

  • Download on the App Store
  • Get it on Google Play