Level: Beginner to Intermediate
Prerequisite: None
Keith McCormick
Expert in Data Science, Predictive Analytics, and AI
Executive Data Scientist in Residence
Pandata, LLC
You may have heard that data scientists spend 80 percent of their time sourcing, cleaning, and preparing data. While this may be an exaggeration (or not!)—data preparation is certainly a large and important part of data science and predictive analytics. The reason for this is that data often does not start out in the ideal format; it may contain bad values, it may not be easily accessible, or it may need to be transformed before we can really start exploring the data and building models. In this session, we will provide an overview of sourcing and preparing data for data science and predictive analytics projects. We will use a motivating example from the speaker’s work and also touch on how Python, SQL, and Hadoop can be used in the data preparation workflow.
This is part of an optional Data Science Bootcamp. Learn more about the courses offered, or attend this individual course.
Geared To
- Anyone who is getting started in data science and is interested in learning more about data preparation. This includes BI and analytics professionals and managers that are exploring the broader world of data science. Nontechnical professionals are welcome as well. Intermediate to advanced professional data scientists will find this session to be a review for them.