Wayne Eckerson

Reflections on the practice of business intelligence.

Wayne Eckersonby Wayne Eckerson Eckerson is the author of many in-depth reports, a columnist for several business and technology magazines, and a noted speaker, blogger, and the author of the best-selling book Performance Dashboards: Measuring, Monitoring, and Managing Your Business (John Wiley & Sons, 2005) and TDWI’s BI Maturity Model.

Goodbye TDWI--It's Been a Great Ride!

This is my last blog as an employee of TDWI. As of November 15th, I’ll be doing research, consulting, and speaking at a different media company, and my Wayne’s World blog will come with me. In addition, I will have my own consulting company—BI Leader Consulting—to do advisory work and assessments for user organizations. I will miss TDWI dearly.

Early Days at PSG

I am fortunate to have started covering data warehousing as it exploded on the scene in the early 1990s. At the time, I was a neophyte research consultant at the Patricia Seybold Group (PSG) in Boston, covering message-oriented middleware. With data warehousing, I found a kindred spirit—I quickly saw that data warehousing was a technology-centric approach to help people and organizations analyze, plan, act, and learn. As a former teacher and journalist, it was a match made in heaven.


Posted on November 4, 201039 comments

Appliances and Solid State to Mobile and Excel: Reflections on Teradata Partners 2010

The Teradata Partners User Conference is one of the largest dedicated data warehousing conferences, pulling BI professionals from all over the world. Its attendees are collectively the most sophisticated users of BI anywhere. Given that Teradata is reinvigorated since the spinoff from NCR and more nimble and responsive, this is a good fit. Here are highlights of what I learned in my brief (1 day) visit to Partners.

Teradata Appliances

Teradata is having good success selling the 2650 machine, which customers are using primarily for departmental warehouses and dependent data marts. Customers like the product because unlike some competitors (e.g. Netezza), the box is easily expandable and highly scalable. You buy only the nodes you need, and if you reach the capacity of the box, you simply buy another, connect it with the first via gigabyte Ethernet, and redistribute the data. With other appliances, you need a forklift upgrade. (Although a Netezza customer said this wasn’t a major inconvenience.) The only downside to the 2650 appliance is that many people still don’t know that it exists. And Teradata, which always priced its products at a premium, recently lowered the list price on the 2650, making it competitively affordable.


Posted on October 28, 20100 comments

IBM Cognos 10: Upward and Outward

IBM Cognos this week released Cognos 10, a major new release of its business intelligence software that contains lots of new goodies that are sure to bring smiles to its installed base and tempt some SAP BusinessObjects customers to jump ship.

I spent two days in Ottawa in September getting the IBM and Cognos 10 pitch. Here are highlights:


- Strategy. Analytics is key to IBM’s future growth, which means Cognos is the apple of IBM's eye. IBM has spent $14 billion acquiring 25 companies since 2006 (inicluding $5M for Cognos) and there is no sign its buying spree will end soon.


Posted on October 28, 20104 comments

The Spanner: The Next Generation BI Developer

To succeed with business intelligence (BI), sometimes you have to buck tradition, especially if you work at a fast-paced company in a volatile industry.

And that’s what Eric Colson did when he took the helm of Neflix’ BI team last year. He quickly discovered that his team of BI specialists moved too slowly to successfully meet business needs. “Coordination costs [among our BI specialists] were killing us,” says Colson.

Subsequently, Colson introduced the notion of a “spanner”—a BI developer who builds an entire BI solution singlehandedly. The person “spans” all BI domains, from gathering requirements to sourcing, profiling, and modeling data to ETL and report development to metadata management and Q&A testing.


Posted on October 21, 201014 comments

From Hollywood to Hadoop

I transcended time and space earlier this week when I attended Hadoop World in New York City.

It started Monday evening. After taking a high-speed train from Boston, I emerged from the bowels of Penn Station onto the bright lights and bustling streets of mid-town Manhattan. The pavement was wet from a passing rain and lightening pulsed in the distant sky, framed by the city’s cavernous skyscrapers. I felt like I had entered a Hollywood set for an apocalyptic movie. But that was just the beginning.


Posted on October 15, 20100 comments

Art, Science, and Analytics

It’s easy to get mesmerized by analytics. The science behind it can be intimidating, causing some people to abandon common sense when making decisions. Just ask financial executives of major investment houses. Blinded by complex risk models, many took on too much debt and then faltered as the economy tightened in 2008.

Relying too much on analytics is just as disastrous as ignoring it and running the business on gut instinct alone. The key is to blend analytics and instinct—or art and science, if you will—to optimize corporate decision making. Interestingly, several business intelligence (BI) leaders use the phrase “art and science” when discussing best practices for implementing analytics.


Posted on October 7, 20101 comments

Dual BI Architectures: The Time Has Come

As a parent, by the time you have your second or third child, you know which battles to fight and which to avoid. It’s time we did the same in business intelligence (BI). For almost two decades we’ve tried to shoehorn both casual users and power users into the same BI architecture. But the two don’t play nicely together. Given advances in technology and the explosion in data volumes and types, it’s time we separate them and create dual BI architectures.

Mapping Architectures


Posted on September 30, 20106 comments

Organizing Analysts: From High Priests to Teammates

Every once in a while, you encounter a breath of fresh air in the business intelligence field. Someone who approaches the field with a fresh set of eyes, a barrel full of common sense, and the courage to do things differently. We were fortunate at TDWI’s BI Executive Summit this August in San Diego to have several speakers who fit this mold.

One was Ken Rudin, general manager of analytics and social networking products, at Zynga, the online gaming company that produces Farmville and Mafia Wars, among others. Ken discussed how Zynga is “an analytics company masquerading as an online gaming company.”


Posted on September 21, 20100 comments

A Marriage Made in Heaven: Search and BI

Here’s a marriage made in heaven: combine search and business intelligence (BI) to create an easy-to-use query environment that enables even the most technophobic business users to find or explore any type of information. In other words, imagine Google for BI.

Search offers some compelling features that BI lacks: it has a brain-dead easy interface for querying information (i.e. the keyword search box made famous by Google and Yahoo); it returns results from a vast number of systems in seconds; and it can pull data from unstructured data sources, such as Web pages, documents, and email.


Posted on August 31, 20102 comments

Do We Really Need Semantic Layers?

It used to be that a semantic layer was the sine qua non of a sophisticated BI deployment and program. Today, I’m not so sure.

A semantic layer is a set of predefined business objects that represent corporate data in a form that is accessible to business users. These business objects, such as metrics, dimensions, and attributes, shield users from the data complexity of schema, tables, and columns in one or more back-end databases. But a semantic layer takes time to build and slows down deployment of an initial BI solution. Business Objects (now part of SAP) took its name from this notion of a semantic layer, which was the company’s chief differentiator at its inception in the early 1990s.


Posted on July 28, 20103 comments

Back to Top

Channels by Topic

  • Agile BI »
    • Agile
    • Scoping
    • Principles
    • Iterations
    • Scrum
    • Testing
  • Big Data Analytics »
    • Advanced Analytics
    • Diverse Data Types
    • Massive Volumes
    • Real-time/Streaming
    • Hadoop
    • MapReduce
  • Business Analytics »
    • Advanced Analytics
    • Predictive
    • Customer
    • Spatial
    • Text Mining
    • Big Data
  • Business Intelligence »
    • Agile
    • In-memory
    • Search
    • Real-time
    • SaaS
    • Open source
  • BI Leadership »
    • Latest Trends
    • Technologies
    • Thought Leadership
  • Data Analysis and Design »
    • Business Requirements
    • Metrics
    • KPIs
    • Rules
    • Models
    • Dimensions
    • Testing
  • Data Management »
    • Data Quality
    • Integration
    • Governance
    • Profiling
    • Monitoring
    • ETL
    • CDI
    • Master Data Management
    • Analytic/Operational
  • Data Warehousing »
    • Platforms
    • Architectures
    • Appliances
    • Spreadmarts
    • Databases
    • Services
  • Performance Management »
    • Dashboards, Scorecards
    • Measures
    • Objectives
    • Compliance
    • Profitability
    • Cost Management
  • Program Management »
    • Leadership
    • Planning
    • Team-Building
    • Staffing
    • Scoping
    • Road Maps
    • BPM, CRM, SCM
  • Master Data Management »
    • Business Definitions
    • Sharing
    • Integration
    • ETL, EAI, EII
    • Replication
    • Data Governance

Sponsored Links