What is your e-mail address?

My e-mail address is:

Do you have a password?

Forgot your password? Click here
close



Return to the Previous Page

David Stodder

Blog archive

Agile Business Intelligence in 2013

Happy New Year to the TDWI Community! As we head into 2013, it’s clear that organizations will continue to face unpredictable economic currents, requiring better intelligence and faster decision processes. TDWI has just published a new Best Practices Report that I wrote, “Achieving Greater Agility with Business Intelligence.” This report focuses on how organizations can develop and deploy BI, analytics, and data warehousing to improve flexibility and decision-making speed. I hope you can attend our upcoming Webinar presentation of the report, to be held on January 15, which will look in-depth at the research findings and offer best practices recommendations for increasing agility.

Three key areas of innovation in technologies and practices that I covered in the report will clearly be important as organizations aim for higher agility in 2013. These include the following:

Managed, self-service BI and analytic data discovery of structured and unstructured data: Decision makers are demanding tools that will allow them to access, analyze, profile, cleanse, transform, and share information without having to wait for IT. They will need access to more than just historical, structured data found in traditional systems. Unified access to both structured and unstructured data is growing in importance as decision makers seek to perform complete, context-rich analysis against big data.

New data warehousing and integration options, including virtualization: Data integration can be the source of challenging and expensive problems. Organizations are evaluating the range of options, including data federation and virtualization, that can give users managed self-service. These could allow users to work more iteratively with IT to create comprehensive views of data in place without having to physically extract and move it into an application, data mart, or specialized data store.

Agile development methods: The use of agile methods, now a mainstream trend in software development, is having an increasing impact on BI and data warehousing. Organizations are proving that they by implementing Scrum and other techniques, they can remove a good deal of the wait and waste of traditional development processes.

In the report, we found that most organizations regard their agility – that is, their ability to adjust to change and take advantage of emerging opportunities – and merely “average.” No doubt, organizations seeking new competitive advantages in 2013 will demand better than that. They will be looking to their BI, analytics, and data warehousing systems to help them become reach a higher level of agility.

 

Posted by David Stodder on January 7, 2013


Comments

Tue, Jan 15, 2013 Chris Simeone New Jersey

David, very informative presentation. I see agile as the biggest aide to correcting some of the disruptions you outlined in your presentation. What other aides are out there to help correct these disruptions

Add a Comment

Your Name:(optional)
Your Email:(optional)
Your Location:(optional)
Comment:
Please type the letters/numbers you see above
Back to Top

Channels by Topic

  • Agile BI »
    Includes:
    • Agile
    • Scoping
    • Principles
    • Iterations
    • Scrum
    • Testing
  • Big Data Analytics »
    Includes:
    • Advanced Analytics
    • Diverse Data Types
    • Massive Volumes
    • Real-time/Streaming
    • Hadoop
    • MapReduce
  • Business Analytics »
    Includes:
    • Advanced Analytics
    • Predictive
    • Customer
    • Spatial
    • Text Mining
    • Big Data
  • Business Intelligence »
    Includes:
    • Agile
    • In-memory
    • Search
    • Real-time
    • SaaS
    • Open source
  • BI Leadership »
    Includes:
    • Latest Trends
    • Technologies
    • Thought Leadership
  • Data Analysis and Design »
    Includes:
    • Business Requirements
    • Metrics
    • KPIs
    • Rules
    • Models
    • Dimensions
    • Testing
  • Data Management »
    Includes:
    • Data Quality
    • Integration
    • Governance
    • Profiling
    • Monitoring
    • ETL
    • CDI
    • Master Data Management
    • Analytic/Operational
  • Data Warehousing »
    Includes:
    • Platforms
    • Architectures
    • Appliances
    • Spreadmarts
    • Databases
    • Services
  • Performance Management »
    Includes:
    • Dashboards, Scorecards
    • Measures
    • Objectives
    • Compliance
    • Profitability
    • Cost Management
  • Program Management »
    Includes:
    • Leadership
    • Planning
    • Team-Building
    • Staffing
    • Scoping
    • Road Maps
    • BPM, CRM, SCM
  • Master Data Management »
    Includes:
    • Business Definitions
    • Sharing
    • Integration
    • ETL, EAI, EII
    • Replication
    • Data Governance

Sponsored Links